Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rong-Ming Ma, ${ }^{\text {a }}$ Shao-Fa Sun ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *

${ }^{\text {a }}$ Deparment of Chemistry and Life Science, Xianning College, Xianning 437005, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of
Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.054$
$w R$ factor $=0.130$
Data-to-parameter ratio $=17.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

4-[(Z)-(2,4-Dimethylphenylamino)phenyl-methylene]-3-methyl-1-phenyl-1 H-pyrazol-5(4H)-one

The NH unit on the exocyclic $\mathrm{C}=\mathrm{C}$ double bond in the title compound, $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$, interacts with the carbonyl group through an intramolecular hydrogen bond.

Comment

The title compound, (I) (Fig. 1) has two methyl substituents in the 2,4-dimethylphenylamino portion of the molecule; the general features are similar to those found in the analogous 2tolylamino (Bao et al., 2004) and 4-tolylamino (Ma, 2005) derivatives. The compound is used to chelate to a divalent transition metal (Ma et al., 2006).

Experimental

1-Phenyl-3-methyl-4-benzoyl-5-pyrazolone ($1.60 \mathrm{~g}, 5.8 \mathrm{~mm} \mathrm{~mol}$) and 2,4-dimethylaniline ($0.73 \mathrm{~g}, 6.0 \mathrm{~mm} \mathrm{~mol}$) were dissolved in ethanol $(35 \mathrm{ml})$; formic acid $(0.5 \mathrm{ml})$ was added to catalyse the reaction. The solution was heated under reflux for 8 h . The solvent was removed and the pure product obtained upon recrystallization from a $1: 1$ ethanol $/ n$-heptane mixture in 80% yield. Crystals were grown from an ethanol solution of the compound. Elemental analysis calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$: C 79.29, H 9.15, N 11.56\%; found: C 79.10, H 9.26, N 11.27%.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O} \\
& M_{r}=381.46 \\
& \text { Triclinic, } P \overline{1} \\
& a=7.909(1) \AA \\
& b=11.200(1) \AA \\
& c=13.239(1) \AA \\
& \alpha=106.410(2)^{\circ} \\
& \beta=106.327(2)^{\circ} \\
& \gamma=100.390(2)^{\circ}
\end{aligned}
$$

Data collection

Bruker APEX area-detector diffractometer
ω and φ scans
Absorption correction: none 10060 measured reflections
$V=1035.6(2) \AA^{3}$
$Z=2$
$D_{x}=1.223 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, yellow
$0.10 \times 0.06 \times 0.04 \mathrm{~mm}$

4633 independent reflections
2018 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.078$
$\theta_{\text {max }}=27.5^{\circ}$

Received 18 September 2006 Accepted 20 September 2006

organic papers

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.130$
$S=0.83$
4633 reflections
265 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.047 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.18$ e A $^{-3}$
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e}^{-3}$

H atoms were positioned geometrically and were included in the refinement in the riding-model approximation [phenyl $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) ;$ methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$]; the methyl groups were rotated to fit the electron density. The amino H atom was similarly constrained $[\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\left.U_{\text {iso }} \mathrm{H}=1.2 U_{\text {eq }}(\mathrm{N})\right]$.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XSEED (Barbour, 2001); software used to prepare material for publication: SHELXL97.

The authors thank Xianning College and the University of Malaya for supporting this work.

References

Bao, F., Lü, X.-Q., Wu, Q., Kang, B.-S. \& Ng, S. W. (2004). Acta Cryst. E60, o155-o156.

Figure 1
The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii. The dashed line denotes the intramolecular hydrogen bond.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (2003). SAINT (Version 6.45A) and SMART (Version 6.45A). Bruker AXS Inc., Madison, Wisconsin, USA.
Ma, R.-M. (2005). Acta Cryst. E61, o3264-o3265.
Ma, R.-M., Sun, S.-F. \& Ng, S. W. (2006). Acta Cryst. E62, m2723-m2724.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

